GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 50
SYLLABUS/COMPONENT: 9709/05, 8719/05
MATHEMATICS AND HIGHER MATHEMATICS
Paper 5 (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	$9709 / 8719$	5

Mechanics 2

1 For taking moments about the edge of the platform
($75 \mathrm{~g} \times 0.9=25 \mathrm{~g} \times x+10 \mathrm{~g} \times 1.1$ (3 term equation)
Two terms correct (unsimplified)
Completely correct (unsimplified) A1
Distance $M C=3.16 \mathrm{~m} \quad \mathrm{~A} 1$

NB: If moments taken about other points, the force of the platform on the plank must be present at the edge of the platform for M1

2 (i) Evaluates $\frac{2 r \sin \alpha}{3 \alpha} \times \cos \frac{\pi}{4}$ M1

Obtains given answer correctly
(ii) For taking moments about $A B$
$\left\{\left(5 \times 10+\frac{1}{4} \pi 5^{2}\right) \bar{x}=(5 \times 10) \times 5+\frac{1}{4} \pi 5^{2}\left(10+\frac{20}{3 \pi}\right)\right\}$
For the total area correct and the moment of the rectangle correct
(unsimplified)
For the moment of CDE correct (unsimplified)
Distance is 7.01 cm

3 For applying Newton's $2^{\text {nd }}$ law and using $a=v \frac{d v}{d x}$
$0.6 v \frac{d v}{d x}=-\frac{3}{x^{3}}$
For separating the variables and integrating
$0.3 v^{2}=-\frac{3 x^{-2}}{(-2)}$
(ft omission of minus sign in line 2 only)
For using $=0$ when $x=10$
$v^{2}=\frac{5}{x^{2}}-\frac{1}{20}$
(aef)
(ft wrong sign in line 4 only)
Speed is $\frac{\sqrt{3}}{2} \mathrm{~ms}^{-1}(=0.866)$

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	$9709 / 8719$	5

4 (i) Distance of the rod from the hinge is $\frac{2.4}{2.5}(0.7)$ or $0.7 \cos 16.26^{\circ}(=0.672) \quad$ B1 [May be implied in moment equation]
For taking moments about the hinge (3 term equation) M1
$0.672 F=68 \times 1.2+750 \times 2.4$
Force is 2800 N A1
(ii) $X=784$
(ft for 0.28F)
B1 ft
For resolving vertically (4 term equation)
$Y=1870$
(ft for 0.96F - 818)
A1 ft

SR: For use of 680 N for weight of the beam: (i) B1, M1, A0. In (ii) ft 680, so $3 / 3$ possible.

5 (i) For using EPE $=\frac{\lambda x^{2}}{2 L}$
EPE gain $=2\left(\frac{200 x^{2}}{2 \times 4}\right) \quad\left(=50 x^{2}\right)$
GPE loss $=10 \mathrm{~g}(4+x)$
For using the principle of conservation of energy to form an equation
containing EPE, GPE and KE terms
$\left[1 / 210^{2}+50 x^{2}=10 g(4+x)\right]$
Given answer obtained correctly

ALTERNATIVE METHOD:
$\mathrm{T}=\frac{200 x}{4}$
$100-2\left(\frac{200 x}{4}\right)=10 v \frac{d v}{d x}$
M1
$1 / 2 v^{2}=10 x-5 x^{2}$
A1
Use $x=0,{ }^{2}=8 \mathrm{~g} \quad$ M1
${ }^{2}=10\left(8+2 x-x^{2}\right)$
A1
(ii) For using $=0$ and factorizing or using formula method for solving M1 $x=4$ (only)

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	$9709 / 8719$	5

6 (i) $2=V T \sin 35^{\circ}-5 T^{2}$ or $2=25 \tan 35^{\circ}-\frac{25^{2} \times 10}{2 V^{2} \cos ^{2} 35^{\circ}}$
B1
$25=V T \cos 35^{\circ}$
B1
For obtaining V^{2} or T^{2} in $A V^{2}=B$ or $C T^{2}=D$ form where A, B, C, D are numerical
$\left[\left[\left(25 \tan 35^{\circ}-2\right) \cos ^{2} 35^{\circ}\right] V^{2}=3125\right.$ (aef) or $5 T^{2}=25 \tan 35^{\circ}-2 \quad$ (aef)]
$V=17.3$ or $T=1.76$
$T=1.76$ or $V=17.3$ (ft $V T=30.519365$)
(ii) For using $\dot{y}=V \sin 35^{\circ}-g T \quad$ (must be component of V for M1) M1
$\dot{y}_{M}(=9.94-17.61=-7.67)<0 \rightarrow$ moving downwards A1 ft (ft on V and T)
For using $m^{2}=\left(V \cos 35^{\circ}\right)^{2}+\dot{y}_{M}{ }^{2}$
$\left(m^{2}=\left((14.20)^{2}+(-7.67)^{2}\right) \quad\right.$ or
For using the principle of conservation of energy
$\left(1 / 2 m\left(v_{M}^{2}-17.3^{2}\right)=-m g \times 2\right)$
$\mathrm{m}=16.1 \mathrm{~ms}^{-1}$

LINES 1 AND 2 ALTERNATIVE METHODS

EITHER Compare 25 with $\frac{1}{2} R\left(\frac{1}{2} \frac{v^{2} \sin 70^{\circ}}{g}\right)$
$25>14.1 \rightarrow$ moving downwards

OR Compare 1.76 with time to greatest height $\left(\frac{V \sin 35^{\circ}}{g}\right)$
$1.76>0.994 \rightarrow$ moving downwards

OR $\quad \frac{d y}{d x}=\tan 35^{\circ}-\frac{g .10}{V^{2} \cos ^{2} 35^{\circ}}(=-0.54)$ used
As $\tan \phi$ is negative \rightarrow moving downwards

Page 4	Mark Scheme	Syllabus	Paper

7 (i) $T \cos 60^{\circ}=0.5 \mathrm{~g}$
($T=10$)
B1
For applying Newton's $2^{\text {nd }}$ law horizontally and using $a=\frac{v^{2}}{r}$ M1 (must be a component of T for M1)
$T \sin 60^{\circ}=\frac{0.5 v^{2}}{0.15 \sin 60^{\circ}} \quad\left(\right.$ for an equation in $\left.V^{2}\right)$
For substituting for T M1
$=1.5$
A1
5

ALTERNATIVELY:

$$
a=\frac{v^{2}}{0.15 \sin 60^{\circ}}
$$

For applying Newton's $2^{\text {nd }}$ law perpendicular to the string M1
$0.5 \mathrm{~g} \cos 30^{\circ}=0.5\left(a \cos 60^{\circ}\right)$
A1
For substituting for a M1
$\left(5 \cos 30^{\circ}=0.5^{2} / 0.15 \tan 60^{\circ}\right)\left(\right.$ for an equation in $\left.V^{2}\right)$

$$
=1.5
$$A1

(ii) (a) $T \sin 45^{\circ}=\frac{0.5(0.9)^{2}}{0.15 \sin 45^{\circ}} \quad$ B1 Tension is 5.4 N

B1
(b) For resolving forces vertically M1
$5.4 \cos 45^{\circ}+R=0.5 \mathrm{~g} \quad \mathrm{~A} 1 \mathrm{ft}$
Force is $1.18 \mathrm{~N} \quad$ A1

