PMT

June 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

4

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	5

Mechanics 2

1	For taking moments about the edge of the platform	M1	
	$(75g \times 0.9 = 25g \times x + 10g \times 1.1 $ (3 term equation)		
	Two terms correct (unsimplified)	A1	
	Completely correct (unsimplified)	A1	
	Distance <i>MC</i> = 3.16m	A1	4

<u>NB:</u> If moments taken about other points, the force of the platform on the plank must be present at the edge of the platform for M1

2	(i)	Evaluates $\frac{2r\sin\alpha}{3\alpha} \times \cos\frac{\pi}{4}$	M1	
		Obtains given answer correctly	A1	2

(ii)	For taking moments about AB	M1
	{ $(5 \times 10 + \frac{1}{4}\pi 5^2)x = (5 \times 10) \times 5 + \frac{1}{4}\pi 5^2(10 + \frac{20}{3\pi})$ }	
	For the total area correct and the moment of the rectangle correct	
	(unsimplified)	A1
	For the moment of CDE correct (unsimplified)	A1
	Distance is 7.01 cm	A1

3

For applying Newton's 2nd law and using $a = v \frac{dv}{dx}$ M1

		••		
$\int dv$	3			
$0.6v \frac{dv}{dx} =$	$=-\frac{1}{x^3}$		AT	
	rating the variables and	integrating	M1	

For separating the variables and integrating $3r^{-2}$

$$0.3v^2 = -\frac{5x}{(-2)}$$
 (+C) A1 ft

(ft omission of minus sign in line 2 only)

For using = 0 when x = 10 M1

$$v^2 = \frac{5}{x^2} - \frac{1}{20}$$
 (aef) A1 ft

(ft wrong sign in line 4 only)

Speed is
$$\frac{\sqrt{3}}{2}$$
 ms⁻¹ (=0.866) A1 7

E	>^ /	т
'	111	

Page 2			Mark Scheme	Syllabus	Paper
		A AN	D AS LEVEL – JUNE 2004	9709/8719	5
(i)	Dis	stance of the rod f	from the hinge is $\frac{2.4}{2.5}(0.7)$ or 0	.7cos16.26° (=0.6	572) B
	[Ma	ay be implied in n	noment equation]		
	Fo	r taking moments	about the hinge (3 term equation	ion)	N
	0.6	72F = 68 x 1.2 +	750 x 2.4		А
	Fo	rce is 2800 N			A
(ii)	X =	= 784	(ft for 0.28 <i>F</i>)		В
	Fo	r resolving vertica	ally (4 term equation)		N
	Y=	= 1870	(ft for 0.96 <i>F</i> –	818)	А

<u>SR</u>: For use of 680 N for weight of the beam: (i) B1, M1, A0. In (ii) ft 680, so 3/3 possible.

5	(i)	For using EPE = $\frac{\lambda x^2}{2L}$	M1

EPE gain =
$$2\left(\frac{200x^2}{2\times 4}\right)$$
 (=50x²) A1

GPE loss = $10g (4 + x)$	B1
For using the principle of conservation of energy to form an equation	M1
containing EPE, GPE and KE terms	

$$[\frac{1}{2}10^{2} + 50x^{2} = 10g (4 + x)]$$

Given answer obtained correctly

5

2

A1

ALTERNATIVE METHOD:

$T = \frac{200x}{4}$	B1
4	

$$100 - 2\left(\frac{200x}{4}\right) = 10v\frac{dv}{dx}$$
 M1

$$\frac{1}{2}v^2 = 10x - 5x^2$$
 (+C) A1
Use x = 0, ² = 8g M1

$$^{2} = 10(8 + 2x - x^{2})$$
 A1

(ii)For using = 0 and factorizing or using formula method for solvingM1
$$x = 4$$
 (only)A1

Pac	ge 3	Mark Scheme	Syllabus	Paper
	j e e	A AND AS LEVEL – JUNE 2004	9709/8719	5
		$25^2 \times 10^{-10}$,	
(i)	2=	= VT sin35° – 5 T^2 or 2 = 25tan35° – $\frac{25^2 \times 10}{2V^2 \cos^2 3}$, 35°	B1
	25	= <i>VT</i> cos35°	-	B1
	Fo	r obtaining V^2 or T^2 in $AV^2 = B$ or $CT^2 = D$ form wh	ere A,B,C,D are	
	nu	merical		M1
	[[(2	25tan35° – 2)cos²35°]V² = 3125 (aef) or		
	57	⁻² = 25tan35° – 2 (aef)]		
	V	= 17.3 or <i>T</i> = 1.76		A1
	T	= 1.76 or $V = 17.3$ (ft $VT = 30.519365$)		B1
/::		T	nont of V for Md) • • • • • •
(ii	-	r using $\dot{y} = V \sin 35^\circ - gT$ (must be compo		
		$_{4}$ (= 9.94 – 17.61 = -7.67) < 0 \rightarrow moving downward	ds	A1
	(ft	on V and T)		
	Fo	r using $M^2 = (V \cos 35^\circ)^2 + \dot{y}_M^2$		M 1
	(м	$M^2 = ((14.20)^2 + (-7.67)^2)$ or		
	Fo	r using the principle of conservation of energy		
	(½	$f_2m(v_M^2 - 17.3^2) = -mg \times 2$)		
	М	= 16.1 ms ⁻¹		A1
LI	NES 1	AND 2 ALTERNATIVE METHODS		
El	ITHER	Compare 25 with $\frac{1}{2}R\left(\frac{1}{2}\frac{v^2\sin 70^\circ}{g}\right)$		M1
	2	5 > 14.1 \rightarrow moving downwards		A1
		/	`	
<u>0</u>	<u>R</u> (Compare 1.76 with time to greatest height $\left(\frac{V \sin 3}{g}\right)$	$\frac{5^{\circ}}{2}$	M
		(g)	J	

 $1.76 > 0.994 \rightarrow moving downwards$ A1

OR
$$\frac{dy}{dx} = \tan 35^\circ - \frac{g.10}{V^2 \cos^2 35^\circ} (= -0.54)$$
 used M1

As
$$tan \phi$$
 is negative \rightarrow moving downwards A1

Page		4	Mark SchemeSyllabusA AND AS LEVEL – JUNE 20049709/8719			Paper 5
			A AND A	S LEVEL - JUNE 2004	9709/07 19	5
(i)	(i)	Tco	os60° = 0.5g	(<i>T</i> = 10)		В
		Fo	r applying Newton's 2	2 nd law horizontally and using	$a = \frac{v^2}{r}$	Μ
		•	ust be a component			
		T s	$\sin 60^\circ = \frac{0.5v^2}{0.15\sin 60^\circ}$	(for an equation in V^2)		A
			r substituting for T			Μ
		=	: 1.5			A
	ALTI		IATIVELY:			
		<i>a</i> =	$=\frac{V}{0.15\sin 60^{\circ}}$			В
		Fo		2 nd law perpendicular to the st	ring	Ν
			5g cos30° = 0.5(<i>a</i> cos	60°)		A
		Fo	r substituting for a			Ν
		(5c	$\cos 30^\circ = 0.5^{-2}/0.15$ ta	an60°) (for an equation in V^2)		
		=	- 1.5			А
	(ii)	(a)	$T\sin 45^\circ = \frac{0.5(0.9)}{0.15\sin^2 4}$	$)^2$		В
	.,		0.15sin Tension is 5.4 N	45°		В
			Tension is 5.4 N			D
		(b)	For resolving forces	svertically		Ν
			$5.4\cos 45^\circ + R = 0.5$	g		A
			Force is 1.18 N			А